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Quantum theoretical models of chemical bond formation and partial charge 
transfer processes in condensed systems, and their extension to processes in 
electronic non-equilibrium are investigated in this paper with a view to further 
exploration of  electrochemical and photoelectrochemical kinetics on semicon- 
ductors. Electrochemical dark and photocurrents on n-III-V-semiconductors 
are correlated with calculated transition probabilities for atom-group transfer 
over larger distances (80 to 240 pm), leading to a first estimate of potential 
surface shapes compatible with experiment. Some specific problems connected 
with transition probability calculations for heavy-particle transfer in strong 
anharmonic potentials are considered in detail, including approximation of 
Franck-Condon transitions in arbitrary potentials by their classical limit. 
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1. Introduction 

An important link between quantum chemical and electrochemical features of 
chemical elementary processes in condensed systems is brought about by the fact 
that electronic partial charge transfer is a ubiquitous quantum phenomenon 
connected with chemical bond breaking or bond formation. Joint consideration 
of chemical bond formation and charge transfer is particularly necessary in the 
study of interfacial electrochemical processes, where quantum-chemical partial 
charge transfer enters into macroscopic observables of  electrical current flow. 
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Related topics are under development since the sixties and have been extended 
in recent years to semiconductor interfacial processes [1]. 

Quantum theoretical access to the dYnamics of elementary chemical bond forma- 
tion and partial charge transfer processes is provided by suitable treatment of 
the transition matrix [2]. Recent progress in this field includes the development 
of charge transfer kinetics in electronic non-equilibrium [1], which extends the 
applicability of quantumstatistical transition models to the fields of semiconductor 
electrochemistry and photoelectrochemistry. 

In this paper, some problems related to these topics will be investigated. A short 
theoretical survey of quantum statistical Franck-Condon models and their appli- 
cation to chemical bond formation coupled with partial charge transfer, and of 
charge transfer kinetics in electronic non-equilibrium is given in Sect 2. Kinetic 
data characteristic of electrochemical dark and photoprocesses on n-III-V-semi- 
conductors will be evaluated in Sect. 3. Calculations of species conversion 
probabilities will be covered in Sect. 4 for heavy-particle transfer in harmonic or 
anharmonic potentials over larger distances (approximately a bond length or a 
solvate radius) in different approximations, including quantum treatment of the 
reactive subsystem and classical treatment of the medium, or classical treatment 
of both (classical limit). The transition from quantal to classical regimes of 
kinetics, particularly with heavy-particle transfer in strong anharmonic potentials, 
is investigated more closely. Calculation data for kinetic charge injection 
coefficients (introduced in [1]) will be discussed in Sect. 5. 

2. Theoretical survey 

It may be illustrative to explain initially the peculiarities of partial charge transfer 
models using the example of electron exchange reactions in solution [3]. Electron 
exchange reactions are usually conceived as consisting of elementary steps with 
transfer of integral electrons. This picture does not take into account the partial 
charge transfer in chemical bonds between donor and acceptor atoms which 
comes into play with shorter donor-acceptor distance. 

The essence of partial charge transfer models lies in the explicit inclusion into 
the theoretical framework of all chemical bonds within the donor-acceptor super- 
molecule. Electron delocalization is even allowed beyond the local, super- 
molecular reaction complex. Quantum theoretical analysis including the dynamics 
of the transfer process has been given in [2]. 

The development of dynamical partial charge transfer models was motivated by 
the fact that partial charge transfer of )t-type (the so-called quantum chemical 
or microscopic charge transfer which signifies the partial charge crossing a 
microscopic electrode interface in an elementary step) or of m-type (where the 
charge is injected into a semiconductor space charge layer) appears in the 
macroscopic charge balance of electrochemical processes [la]. The quantum 
chemical approach of partial charge transfer in electrochemical systems, and the 
problems of distribution of partial charge transfer over the orbital energy scale, 
particularly in semiconductor interfacial processes, was discussed in [lc, 4]. 
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2.1. Transition matrix treatment of chemical bond formation 
and partial charge transfer processes 

Following a dynamical model treatment on the level of a Pauli master equation, 
we start with a transition probability expression 

2~r 
(P,-~b)=-~Av ITbal 2. 8(AEVib+ AE) (1) 

where Av denotes thermally weighted, averaging of the initials and summation 
over final vibration states. Tb. are total transition matrix elements, AE rib is the 
change of  vibration energy in the conversion of a --> b, and AE is the total energy 
difference of  the zero-points of initial (a) and final (b) state. 

The transition matrix is in general defined in adiabat ic  representation of  nuclear 
(~ba~bb) and electronic (~a~Pb) state vectors: 

Tba = (~bbl Vl~b~); V = (r176 (2) 

where V is the electronic transition element and H ~ is the (exact) hamiltonian 
in fixed-nuclei approximation. The eigenvectors of  H ~ are adiabatic many- 
electron states. Adopting a 2-state model following [2, 5], we take into account 
the adiabatic ground-state vector ]r and an excited state [~P2), and of the 
corresponding adiabatic potential surfaces El(R), E2(R) which depend on 
nuclear configuration. This full quantum theoretical procedure is capable of 
allowing for any chemical bond phenomena in the ground state of the system. 

The diabatic electronic states appearing in (2) are obtained from [~01) , [~02) by 
means of a unitary transformation 

u (3) 
I~b>/ \1~2>/" 

Eq. (3) leads to a nondiagonal representation of  the hamiltonian, with diabatic 
electronic state vectors [~pa), ]~0b) and related diabatic potential surfaces E~(R), 
Eb(R) with respectively one minimum at position a or b, for which the nuclear 
state vectors [4~), ]~bb) are defined. The unitary 2-state matrix U takes the usual 
form 

( sin x(R)  cos x(R)~ 

U = \ - c o s x ( R )  sinx(R)] 

where x(R) is a suitably chosen function of nuclear configuration. The electronic 
transition element V of  Eq. (2) is then 

V = sin x(R).  cos x(R).  [E2(R) - El (R)]  (4) 

which assumes a maximal value near x(R*) ~- 7r/4: 

Vmax--~ 0.5 [E2(R*) - El(R*)]  (4a) 

R* denotes a saddle point between the (adiabatic) ground state minima a and 
b. In the familiar Condon approximation, one gets 

Tb. -- V,~." (4)bl~b~) (5) 

where (tPbl~ba) is the Franck-Condon overlap. 
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The extension of  this transformation procedure to processes in condensed systems 
consisting of a reactive subsystem S and medium M has been treated in [2]. The 
possibility of  partial charge transfer is guaranteed by this procedure due to the 
fact that near the minima of  the transformed diabatic species potentials E~Eb, 
the original adiabatic ground-state potential surface E1 dominates; the latter gives 
full account of electron delocalization connected with chemical bonds [1, 2]. 

2.2. Quantum statistical Franck-Condon models 

Once arrived at adiabat ic  potential surface representation, one can proceed with 
common Franck-Condon-type calculations. A well-justified approximation con- 
sists of  a quantal representation of  the reaction complex S and a classical (or 
high-temperature) representation of the medium M (cf. [6-9]). (1) in this case 
takes the form 

<Pooh)=22 Pov~bw 
0 w ]1 

= (r 1/2" f ( v )  �9 ~ ~wf(V)" g(w, v) (6) 

with f ( v )  = exp ~E~sv, 

g ( w , v ) = l  s 2. Tb . . . .  I exp fl[Ebsw -- E~s~ + EM + AE]2/4EM 

r = - 1 / k T .  EM is the classical medium reorganization energy. The terms Easv 
and Ebsw are vibration levels of  the reaction complex S in the initial (a) and final 
(b) state respectively v and w are quantum numbers. AE is the same as in Eq. 
(1); s Tb . . . .  are transition elements of the reaction complex S which have the form 
of Eqs. (2) or (5). In the following we shall occasionally compare harmonic and 
Morse potentials which are (in 1D) respectively 

E ( R )  = E(Ro) + (k/2)  �9 (R - Ro) 2 (7) 

o r  

E ( R )  = E (Ro) + (k/2a2) �9 [1 - e x p ( -  a (R  - Ro)] 2 (8) 

where Ro corresponds to potential minimum, k is the harmonic force constant, 
and a the anharmonicity constant corresponding to a bond-dissociation energy 
D = k /2a  2. 

Problems of  dividing (P) into kinetic Arrhenius parameters, as well as quantum 
medium effects have been considered in [10]. Calculation of  transition matrix 
elements s �9 Tb . . . .  with Morse potentials up to higher vibration states v, w is available 
from [ l l a ] ;  data for (P) and related quantities for harmonic and anharmon~c 
potentials have been given in [9, 11]. 

With increasing reduced mass/~ but otherwise fixed potential characteristics, the 
number of  transition components P~-~bw to be allowed for in Eq. (6) increases 
rapidly and (P) ultimately goes to its classical limit for both the reactive subsystem 
S and medium M. Classical limits have been considered, e.g. in work on optical 
transitions [12], and are familiar in the above-mentioned reorganization energy 
concept [13] which is valid in harmonic approximation. A derivation of the 
classical limit of  (P), valid for arbitrary potentials, has been made and the result 
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is briefly given in Appendix 1 of this paper; applications are included in the 
present study. The full classical regime of Franck-Condon transitions turns ou t  
to be most relevant for heavy-atom-group transfer in strong anharmonic potentials 
with low barrier height. 

2.3. Charge transfer kinetics in electronic nonequilibrium 

Semiconductor surface processes under current flow and /o r  illumination mostly 
proceed at strong electronic nonequilibrium. These conditions have been included 
in the transition matrix treatment, taking into account the partial charge injection 
into the medium (semiconductor space charge layer) accompanying an interfacial 
species conversion process, and also the electronic non-equilibrium of the 
medium. The theoretical argument is briefly as follows [1]. Charge injection is 
connected with energy injection which contributes to the term AE in Eq. (1). A 
compact expression can be given for the most relevant case of nondegenerate 
semiconductor relative to an electronic equilibrium reference state eq. For an 
electron injection process one obtains 

AE - A E e q =  mkT. In ( n J n  ~ (9) 

and for a hole injection process 

AE - AE eq = - m k T .  In (pjpO) (10) 

where m is the charge (in units of  elementary charge) injected in a forward 
process into the medium, n~ and Ps are the surface electron and hole densities 

0 (to be calculated from electronic balance and transport equations), and n~ and 
pO their equilibrium values. Quantum statistical and thermodynamic suppositions 
connected with (9, 10) have been discussed in [ lb]  and [10]. 

Starting from Eqs. (9) and (10) for a conversion process of chemisorbed or 
physisorbed species A and B 

A .  " B + m n -  or A + m p  +. "B (11) 
vn vp 

one gets the following kinetic equations for charge transfer in condensed systems: 

v~ = (P , ) .  ro  - ( P o ) .  V~; v. = (P , ) .  ro  - (P~) �9 Vb (12) 

with (/~,)= ~,. (ns) -m, (/5,)= ~,. (n~) m 

(/~p)--- ~v" (P,)'~, (/~p) = ~v" (p,)-~a. (13) 
In (12), Fa and Fb are adsorption densities of species A and B. The transition 
probabilities (P) are proportional to (i) the rate coefficients v which depend 
mainly on the interfacial dipolar Helmholtz potential, and (ii) a fractional power 
of  surface electron or hole density; r~ and rh are kinetic charge injection 
coefficients. The appearance of fractional electronic densities in both the forward 
and backward rate is a new feature which follows ultimately from microreversibil- 
ity of  the charge injection process. 

2.4. Kinetic charge injection coefficients 

The kinetic charge injection coefficients rfi and rh of  Eqs. (13) are related to the 
injected charge m of  Eqs. (11), according to 

rh ~ m.  a In (P)/fl aAE, rh ~ m. O In (P) /3  OAE (14) 
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= - l / k T .  In Eq. (14), AE is referred to the initial state in both the forward 
and backward process. Small corrections to Eq. (14) have been given in [lb,  14]. 
The factors 0 In (P}/13 a b E  are accessible by transition probability calculations 
and will be justified below in Sect. 5. They can usually be fitted sufficiently 
accurate by 

0 In (/5)//30AE = d + f). A E  + ~. ( A E )  2 (15) 

and similarly 0 In (P)I~OAE.  According to Eqs. (9) and (10), the position of AE 
is somewhat different for non-equilibrium processes with electrons or holes 
(corresponding to dark or photoprocesses on n-semiconductors). One gets (cf. 
[14]) 

d + ~ i =  1, b = b ,  6 = - ~ .  (16) 

Possible distortion of potential surface shape under AE-variation will at first be 
neglected. 

2.5. Discussion 

Little is known so far about chemical bond breaking and formation processes in 
strongly interacting reaction complexes with atom-group transfer over larger 
distances AR between initial and final potential minimum. For a process con- 
nected with interchange of sites within the solvate shell, one can estimate AR to 
be of the order of  magnitude of  a bond length or of a solvate radius, from 
structural arguments and (with increasing reliability) from quantum chemical 
data. In Sect. 4 we therefore start with a proof  of Franck-Condon transitions for 
atom or atom-group transfer in the range 80 to 240 pro. 

Charge transfer depends on electron delocalization and can take place over much 
larger distance (>  1000 pm, cf. e.g. [15, 16]), when the electronic matrix element 
Vr~ax remains sufficiently large at large donor-acceptor distance. Decrease of Vmax 
according to Eq. (4a) is generally expected with decreasing donor-acceptor 
interaction. 

3. Kinetic data of electrochemical dark and photodissolution 
of  n-l l l-V-semiconductors 

As a second input for evaluation, we estimate in this section a possible order of 
magnitude of transition probability (P) for the primary step of electrochemical 
n-II1-V- semiconductor dissolution. On n-GaAs or n-GaP, stationary anodic dark 
or photocurrents due to semiconductor dissolution lie in the range 

jdark~___ 10 to 10 2 nAcm-2; jphoto_____ mAcm-2. (17) 

The dark current on n-materials is an electron current, the photocurrent a hole 
current. Independently of  detailed mechanism, we can presume a reaction 
sequence with consecutive reaction steps. With the stationarity condition required 
for a sequence, fil = ~ 2  . . . .  Di, and the stationary current is 

]-= ~. m.d~ = (~. m~)F~, = zF~, (18) 

where z is the overall charge number of the electrochemical process. For a totally 
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irreversible anodic process sequence [17] one gets from (12): vl = (P1)" Fa. This 
scheme is to be expected when an A B  semiconductor is dissolved by direct 
transfer of  oxidized A and B in turn into the solution, and may likewise be 
possible when dissolution proceeds over intermediate crystallographic positions 
at the interface (cf. discussion in [18]). With z = 6 to 8 and a rough estimate of 
an upper limit of density of dissolution sites of Fa < 10 -"  mol cm -2 (or <10 -2 
of  a monolayer), one obtains for the primary, controlling semiconductor dissol- 
ution step from Eqs. (17) and (18) 

(/~n)dark :~ 10-3--10 -2 8 -1. (/~p)photo ~ 10 2 S -1. (19) 

This lower-limit estimate of (/5) points to a medium-sized activation barrier. 

This estimate also holds roughly when near-equilibrium steps precede the irrevers- 
ible, controlling step, because the density of the intermediate which reacts in the 
controlling forward process is then in equilibrium with dissolution sites and can 
hardly exceed the estimated density I "  a .  

The injected partial charge m appearing in Eqs (9)-(11) can be expected to be 
either in the range about 2-4 for direct transfer of  oxidized A and B into solution, 
or to be smaller when the dissolution proceeds over intermediate positions on 
the surface. 

4. Transition probabilities for heavy particle transfer over larger distance: 
discussion of problems and some first results 

Exploration of  local potential surfaces for chemical species conversion processes 
on semiconductor interfaces is still in its infancy. In advance of potential surface 
data, particularly for the type of processes addressed in the preceding section, 
we attempt here to get some information about possible potential surface shapes 
compatible with both the expected potential minima distance AR considered in 
Sect. 2.5, and the order of magnitude of transition probabilities (P) estimated in 
Sect. 3. For that purpose we limit ourselves, in first approximation, to a 1- 
dimensional reaction path model which we consider in its transformed diabatic 
representation. 

As a rule, a sufficiently large (P) at large AR is realized when both the electronic 
transition element and the Franck-Condon overlap are relatively large (a not too 
large medium reorganization energy of the semiclassical model, Eq. (6) is also 
required). The former condition is mostly obeyed at strong chemisorption (esti- 
mated Vma x >> 10 -1 eV); the latter condition requires flat potentials in the vibration 
overlap region of initial and final state. Anharmonicity of potential surfaces thus 
plays a decisive role in large-distance transfer. 
Another point already addressed in Sect. 2.2, concerns the importance of the 
classical limit of (P) in heavy-particle transfer. In this limit the potential surface 
shapes are the sole quantities controlling the transition probability. Some rep- 
resentative data determined using the formulas briefly outlined in Appendix 1 
are given in Sect. 4.4. In this connection, the transition from the quantal treatment 
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of the reactive subsystem S into its classical limit requires further investigation: 
preliminary data is given in Sect. 4.3. Some properties of the quantumstatistical 
Franck-Condon representation following Eq. (6) are briefly considered once 
more in Appendix 2. 

4.1. Estimate of  adiabatic potentials by inverse transformation 
of  diabatic model potentials 

Transformation of the original adiabatic state vectors and potentials into diabatic 
ones is determined by the unitary matrix U given in Eq. (3). In advance of 
detailed knowledge of adiabatic potentials E 1 E 2 which appear in Eqs. (4) and 
(4a), it is reasonable to first pursue a reverse procedure and invert Eq. (3) in 
order to get information about adiabatic potentials which are compatible with 
kinetically adjusted diabatic model potentials. Some tentative estimates, par- 
ticularly with diabatic potentials of anharmonic Morse type, are under further 
development. 

4.2. A representative example of  heavy-particle transfer in strong 
anharmonic potentials over large distance 

An example of fiat anharmonic potentials in the vibration overlap range which 
simulates some qualitative features of a bond dissociation process on a semicon- 
ductor interface coupled with simultaneous solvation bond formation, is shown 
in Fig. 1 (quantitative assignment is not intended at the present stage). Transition 
probabilities (P) in these potentials, calculated in the classical limit, are given in 
Table 1. 

The classical limit is usually a lower bound of quantum statistical calculation 
(for exceptions see Sect. 4.3). The results of Table 1 therefore demonstrate the 
general possibility of relatively large transition probabilities under the condition 

iS 

w 

6 ~o 2~,o 
,~R/pm 

Fig. 1. E x a m p l e  of  a n h a r m o n i c  d i aba t i c  po ten t i a l  curves  for  the  in i t ia l  and  final state. Morse  po ten t ia l s  
wi th  h a r m o n i c  force cons tan t s  k~ = 4 .1 .102  N m  -1 (or  kg  s-2),  kb = 2.8 �9 102 N m  -1, a n h a r m o n i c i t y  
cons tan ts  a~ = 2 9 . 4  (nm) -1, ab =- -29 .4  (nm)  -1 ( co r r e spond ing  to b o n d  d i ssoc ia t ion  energies  D ,  = 

1.5 eV, D b = 1.0 eV), AR = 240 pm,  AE = 0 
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of  large potential minima distance A R -  240 pm. This is true even at AE = 0 
where the barrier is almost 1 eV. 

The latter value for the barrier is likewise representative for a forward transition 
probability (P) of equal magnitude as given in Table 1, but at AE < 0. Figure 1 
shows a least favourable case in so far as (15) is large (this does not exclude 
kinetic irreversibility, since the backward rate (/5). Fb can be negligible when, 
in chemical non-equilibrium Fb is small). The same forward transition probability 
(/5) as in Table 1 but a much lower backward transition probability (/5) is obtained 
when, at fixed potential curve shape near the diabatic intersection, AE is made 
<0 by lowering the potential minimu'rn b (right-hand minimum in Fig. 1). 

4.3. Transition from quantai to classical regime of heavy-particle transfer 

An estimate of the validity of the classical limit of chemical species conversion 
probabilities can be obtained by investigating the transition from the quantal to 
the classical regime of the reactive process in the subsystem S. To that end we 
have started a closer comparison of the quantum statistical model using Eq. (6), 
and its classical limit using Eq. (A2) or (A3) of Appendix 1. 

Some results are given in Table 2 which refer to examples with relatively small 
force constants and low barriers. For such cases the following statements can be 
made: 

(a) For transitions using Morse potentials, the classical limit provides a very 
good approximation of (P) even at small reduced mass Ix, being better with 
smaller AR values. 

(b) At fixed force constants k and potential minima distance AR, and fixed 
reduced mass /x in the quantum cases, one observes a much larger ratio 
(P)quantal/(P)classical with harmonic than with Morse potentials, mainly due to the 
larger barrier in the former cases. 

Within the framework of Eq. (6), the relation 

In (P)/(/5) = In (Zb/Za) + ~AE (20) 

holds for any potential [9]. Za and Zb are the vibration partition functions of 
the initial and final state. Eq. (20) allows to prove that in the summation over v 
and w in Eq. (6) all relevant terms have been allowed for. 

In the last columns of Table 2 are given the expansion parameters a, b, c of Eq. 
(15). They will be discussed in Sect. 5. Equations (16) provide another proof  of 
numerical consistency. 

Table L Classical limit of transition probabilities (P) for the strong anharmonic potentials shown in 
Fig. 1. T 300 K,/3 = -38,65 eV -1, E M 1 eV, Vma x 1 eV. (P) calculated from Eq. (A2) 

A E / e V  -0.5 -0.25 0 +0.25 +0.5 
(P) / s  -1 1.2.107 6.4.103 1.2 9.8 �9 10 -5 1.3 - 10 -8 

(P) / s  -1 4.1 �9 10 2 3.3 '  10 -1 0.95 1.2 2.5 
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Table 2. Transition probabil i ty parameters in Eqs. (6) or (A2), and (15). T 300 K, EM 2 eV, Vma x 1 eV, 
k a 16.6 Nm -1 (or kg s-2), k b 66.4 Nm -1, a a 8 (nm) -1, a b - 1 6  (nm) -x. Harmonic frequencies: at /z 
1 g tool- l :  to a 1 �9 1014 s -1, to b 2 .  1014s -1, at ~ 30 g tool- t :  1% 1.8.1013 s -1, to b 3.7.1013 s -1 

In (15) In (/5) ti ti 6 =/~ e = - e  
A R / p m  at h E  = 0 eV -1 eV -2 

80 harmonic , /z  = 1 12.6 13.9 0.48 0.52 0.22 0.01 

harmonic, classical 11.9 12.6 0.47 0.53 0.21 0.01 

Morse , /x  = 1 14.6 15.9 0.49 0.51 0.23 0.01 
Morse , /z  = 30 14.3 15.0 0.48 0.52 0.22 0.02 

Morse, classical 14.3 15.0 0.48 0.52 0.22 0.02 

120 harmonic , /z  = 1 7.1 8.4 0.46 0.54 0.19 0.01 
harmonic, classical 5.1 5.8 0.44 0.56 0.17 0.02 

Morse , /z  = 1 12.1 13.4 0.47 0.53 0.20 0.035 
Morse, classical 11.7 12.4 0.46 0.54 0.19 0.05 

160 harmonic , /x  = 1 -0.8 0.5 0.43 0.57 0.16 0.01 
harmonic,  classical -4 .7  -4 .0  0.41 0.59 0.13 0.02 
Morse, p~ = 1 9.6 10.9 0.45 0.5.5 0.16 0.08 
Morse, classical 9.1 9.8 0.43 0.57 0.15 0.10 

Usually the quantumstatistical treatment yields larger transition probabilities than 
those calculated in the classical limit. There are however exceptions: one can get 
(P)quantal  < (P)elassical when, in the quantal case with small reduced mass and large 
vibration quantum hto, a transition component from vibration ground state into 
one final state dominates strongly, while the classical limit corresponds to reduced 
mass ~ ~ ~ with (in principle) an infinite number of transition components. 

Another peculiarity occurs in very fiat anharmonic potentials, again with small 
reduced mass /z and large vibration quantum hto, when transition components 
near the Morse dissociation limit have not yet reached the maximum of the 
probability distribution of  transition components (see Fig. 2 in Appendix 2) or 
have only slightly fallen short of the maximum. In such cases (partly observed 
in Fig. 1) the Morse potential approximation itself requires reconsideration, so 
far as the supposed reduced mass is relevant. Further calculations related to these 
points will be reported when they have been completed. 

5. Kinetic charge injection coefficients 

For mechanistic decision it is desirable to have a theoretical estimate of the ratio 
of  the kinetic charge injection coefficients rfi or rh to the injected charge m, which 
according to Eq. (14) is mediated by the factor 

0 In (P)/fl OAE (21) 

Table 3. Kinetic charge injection parameters for the anharmonic  example of Fig. 1 and Table 1, d 
0.95, fi 0.05, b = b = -0.20 eV -1, ~ = - ~  = -0.94 eV -2 

~E/eV  -0 .5  -0..25 0 +0.25 +0.5 
0 In (/5)/floAE 0.82 0.94 0.95 0.84 0.62 
0 In (P)/floAE 0.18 0.06 0.05 0.16 0.38 
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Eq. (21) takes the value 0.5 in harmonic potentials with equal force constants in 
the initial and final state at AE --0. Generally one can deduce some influence of 
the slope of the initial and final potential curves at their intersection, by consider- 
ation of the classical forward and backward activation barriers well-known since 
early electrochemical kinetics (usually applied to Helmholtz potential shifts on 
metal electrodes). Derivation of Eq. (21) from (P) calculations takes into account 
further dynamical factors and therefore gives a more definite proof. 

The examples of Table 2 show only moderate deviations of Eq. (21) from 0.5 as 
is seen in the parameters a, b, c of Eq. (15). A quite different result is obtained 
with the potential curves of Fig. 1: data for Eq. (21) given in Table 3 point out 
very asymmetric values for the forward and backward processes thus confirming 
the qualitative influence of different potential curve slopes at the intersection. 
Calculation of Eq. (21) includes all additional controlling factors which gain 
influence (particularly in the regime of Eq. (6)). 

A quantum effect in the semiclassical model of Eq. (6), which could give rise to 
oscillatory AE-dependence of kinetic charge injection coefficient n~ or r~, can 
usually be ruled out in electrochemical systems with fluid electrolyte. This is 
confirmed in Appendix 3. 

6. Summary 

This paper treats some problems of the quantum theory of chemical elementary 
processes in condensed systems, with a view to exploring chemical bond formation 
and partial charge transfer in electrochemical dark and photoprocesses on semi- 
conductors. This work prepares for the kinetic evaluation of local potential 
surfaces, and provides information about the following points: 

Calculation of transition probabilities for heavy-particle transfer over large dis- 
tances (80 to 240 pm) in strong anharmonic potentials. 

Study of the transition from quantal to classical regime of heavy-particle transfer 
over low or medium-sized barriers, and application of the classical limit of 
Franck-Condon transitions in arbitrary potentials. 

Calculation data concerning the ratio of the kinetic charge injection coefficients 
r~ and r~ appearing in kinetic equations for charge transfer processes in electronic 
non-equilibrium, to the partial charge m injected in the elementary process into 
the semiconductor space charge layer, which essentially depends on potential 
surface shapes. 

Appendix 1: The classical limit of Franck-Condon transitions 
in arbitrary potentials 

Referring to Sects. 2.2 and 4, we briefly outline here the classical limit of 
Franck-Condon transitions in arbitrary potentials. Vibration levels Ear and Ebw 
in this limit become continuous functions of  the transfer coordinate R, i.e. 
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Ea~-->Ea(R), Eb,~-'>Eb(R), where Ea and Eb are the initial and final potential 
curves. For a 1D-system without medium, one gets in the Condon approximation 

27r 
(P) =--h- �9 V~lax " (Z~t) -1" ([de/dRIR~) -1" exp flE,,(Rs) (AI) 

where Z~ ~ is the classical vibration partition function of initial states, e(R)= 
[Eb(R)-Ea(R)+AE] ,  and Rs is the solution of e(R)=0.  Eq. (A1) holds for 
arbitrary potentials EaEb. For harmonic potentials with equal initial and final 
force constant, one gets from Eq. (A1) the familiar reorganization energy formula 
of [13]. 

For a system composed of a classical anharmonic reactive subsystem S and 
harmonic medium M, one gets 

(P)=(~/h2E, ,kT)  '12" V~,• (Z~')-'" l ~~ dR.expf le*(R)  (A2) 

where e*(R) = E~(R) + [Eb(R) - E#(R) + E M 4= AE]E/4EMand Z~ I refers to the 
reactive subsystem S. Solving the integral in Eq. (A2) by means of the saddle 
point method (which is exact with harmonic potentials and a good approximation 
for not too large anharmonicities and not too large potential maxima distances 
AR), one gets 

(p) = (~/hZE~kT),/2 . Vmax2. k,/Z �9 (a'e*/OR2)~/2 �9 exp [3e*(R,) (A3) 

where k~ is the force constant of the initial potential curve of the subsystem S, 
and R~ the solution of (Oe*/OR)=0. In examples like that of Fig. 1, direct 
evaluation of Eq. (A2) is preferable. 
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F i g .  2. D i s t r i bu t i on  of  t he rma l ly  we igh ted  t r ans i t ion  c o m p o n e n t s  P a v ~ b  f rom Eq. (6) a n d  (A4) over  
in i t ia l  v ib r a t i on  energy,  Curve  I:  h a r m o n i c  po ten t ia l s ;  curve 2: Morse  potent ia l s .  T = 300 K, EM = 2 eV, 
Vmax = 0.3 eV, A E  = +0.5 eV, /~ = 1 g mo1-1, AR = 80 pm,  force cons tan ts  ka = 16.6 N m  - t ,  k b = 
66.4 N m  -1, a n h a r m o n i c i t y  cons tan t s  a a = 8  (nm) -1, ab = - 1 6  (nm)  -1, h a r m o n i c  f requenc ies  to a = 
1 �9 1014 S - 1 )  O) b : 2 �9 1014 s - ]  
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Appendix 2: Distribution of  transition components over initial vibration energy 

Detai led in fo rmat ion  abou t  the t ransi t ion process is con ta ined  in the d is t r ibut ion  
of thermal ly  weighted t rans i t ion  componen ts  in the model  of Eq. (6), 

P~-.b =- E P~-~b~ (A4) 

over init ial  v ibra t ion states (v). For  given force constants  k and  reduced mass, 
Morse-P-values  usual ly  exceed harmonic  ones by several orders of magni tude  
par t icular ly  at larger potent ia l  m in ima  distance;  cf. [2a, 9] and  Table  2 of this 
paper.  Pao~b  runs with increasing v through a max imum,  due to compet i t ion  of 
decreasing Bol tzmann  factor f ( v )  and init ial ly increasing factor ~w g ( w ,  v) .  At 
larger v, Morse  t ransi t ion dis t r ibut ions can occassional ly fall off steeply: Fig. 2 
shows an example  where this feature is par t icular ly p ronounced .  
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Fig. 3a, b. Range of appearance of quantum oscillations in the In (P)-AE -relation of Eq. (6). Top: 
total transition probability (P}; bottom: transition components P~o~bw (quantum number w labelled 
on the curves), a T= 30 K (narrow Gauss curves Pao~bw, leading to quantum oscillations in (P)). 
b T= 120 K (broader Gauss curves Pao~bw, leading to suppression of oscillations; also at 60 K). 
E M = 1 eV, to a = t% = 3.9 - 10 TM s -1. The appearance of quantum oscillations does not critically depend 

s on the transition matrix elements Tbw.~ 0. For simplicity harmonic potentials with k a = k b = 250 Nm -1 
and AR 100 pm have been chosen 
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Appendix 3: Quantum effects in the semiclassical In ( P ) - A E  relation. 

The semiclassical transition probability (P) of  Eq. (6) at low temperatures can 
exhibit an oscillating dependence on AE. The range o f  appearance o f  this quantum 
effect is o f  interest since it could in turn exert influence upon the kinetic charge 
injection coefficienents rfi and r~, which are proportional to a In (P)/flaAE. 

The fol lowing discussion supports that these quantum oscillations are confined 
to temperatures far be low room temperature as already pointed out in [8]. Let 
us first suppose that transitions from initial vibration state v = 0 are favoured, 
which is the case when htoa is at least > 5  kT. Further we limit ourselves to 
toa = t0b = to. Then oscillations in In (P) over AE occur, when (AE + E M )  < 0 ,  and 
at the most  two terms g(w, 0) in Eq. (6) contribute at given AE significantly to 
Y~w g(w, 0). The latter condit ion requires g(w, 0) to be narrow Gauss curves over 
AE, obeying 

hto >~ 4(EMkT) 1/2 (condit ion for quantum oscillations). (A5) 

Figure 3 shows two examples,  one with and the other without quantum oscillations 
in In (P) over AE. Weaker exothermicity with (AE + EM)~> 0, or more than on 
relevant vibration mode  in the quantum subsystem leads to strong suppression 
of  the quantum oscillations. 
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